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Introduction
Census data have been widely used to support a 
variety of planning and decision making activi-
ties. Academic inquiries ranging from economic 
and housing analyses to demographic and trans-
portation studies use census data frequently. 
Among the social sciences heavily relying on 
census data, geography plays a leading role in 
mapping census data. The development and 
availability of the TIGER/Line files in the 1990s 
provided the necessary digital boundary data to 
support census mapping (Broome and Meixler 
1990; Cooke 1998). Mapping census data has 
become a relatively straightforward task due to 
the proliferation of GIS. Among the wide range 
of data that the U.S. Census Bureau gathers and 
disseminates through various programs, popu-
lation and housing data have been used and 
mapped frequently.

Population and housing data collected during 
previous decennial censuses were disseminated 
through various summary files (SFs). Some data 
such as those in SF1 were tabulated from the 
census short form, which was received by every 
household in the U.S., and theoretically these data 
were derived from the entire population. However, 
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some variables, such as those about economic and 
housing characteristics, were based upon the long 
form received by one in six people in the U.S. 
Even with such a relatively large sample size, long 
form data do have some data quality issues (Bench 
2004). In 1996, the U.S. Census Bureau launched 
the American Community Survey (ACS), a new 
continuous measurement program, which gathers 
data to replace the census long form. When using 
the ACS data, one should pay extra attention to 
data quality, especially the sampling error, because 
the ACS data are survey data based upon a sample 
size much smaller than those in previous decen-
nial censuses when the long form was used. In 
their editorial, Heuvelink and Burrough point out 
that “It is crucially important to know how accu-
rate the data contained in spatial databases really 
are, because without that knowledge we cannot 
assess the true value of the derived information, 
nor the correctness of the decisions it supports.” 
(Heuvelink and Burrough 2002, p. 111)

American Community Survey data have been 
available to the public since 2006 (for 2005 data), 
and more data products will be available in the near 
future. The use of ACS data is likely to increase 
tremendously as it replaces the long form. The 
Census Bureau provides a margin of error (MOE) 
for each estimate of a variable for each census 
enumeration unit to reflect the magnitude of sam-
pling error, an important aspect of data quality 
or reliability. While sound analyses using the ACS 
data should include data quality information, map-
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ping of ACS data usually ignores the data quality 
information. Incorporating the margin of error 
or related data quality information in mapping 
is conceptually and technically challenging. Data 
quality measures have to be shown together with 
the original ACS estimates in the mapping process. 
The resulting maps are likely more complex and 
more difficult to interpret. One of the challenges 
is to design maps that capture pertinent informa-
tion but are comprehensible by most map readers 
(McGranaghan 1993).

In this article, we explore a set of methods to 
map the ACS estimates incorporating the associ-
ated margins of error or the derived coefficients 
of variation (CVs). We tend to focus our selections 
of method toward those that can be implemented 
through standard GIS software easily, partly because 
many census maps are produced using GIS and 
readers can adopt these methods without using 
special software. Another objective of this paper 
is to draw public attention to the importance of 
including data quality information when mapping 
the ACS data.

ACS Overview
Details of ACS data are available from many 
sources, including the Census Bureau web site1, 
various reports compiled by Bureau’s staff mem-
bers2 and researchers (e.g., Van Auken et al. 
2004; Citro and Kalton 2007; Griffin and Waite 
2006; Mather et al. 2005), and many academic 
papers evaluating the quality of ACS data (e.g., 
Scardamalia 2006). In this paper, we will limit 
our overview of ACS to those aspects that are 
relevant to the mapping of ACS estimates with 
margins of error and the coefficients of varia-
tion.

The ACS questionnaire is very similar to the 
decennial census long form, with the exceptions 
of a few questions (Citro and Kalton 2007, pp. 33-
36, Table 2.2). Unlike the decennial census which 
is conducted every ten years, ACS is a continuous 
measurement program. Every month, the ACS 
questionnaire is mailed to approximately 250,000 
housing unit addresses across all counties in the 
U.S. Over the year, the total sample size is about 3 
million addresses, which is about 2.3 percent of the 

total 129.5 million housing addresses that existed 
in the U.S. in 2005. While this sample is relative 
large as compared to major national surveys, it is 
still small as compared to the approximately 18 
million addresses (or one-sixth of total housing 
addresses) which received the census long form 
in 2000. The uncertainty of estimates can thus 
be an issue in the analysis (MacDonald 2006). 
Simple absolute differences between estimates 
may not be regarded as real differences, as they 
may be attributable to sampling error. In other 
words, the emergence of a spatial pattern based 
upon the differences of ACS estimates across areal 
units may not be real because those differences 
among estimates may be created by sampling errors. 
Therefore, when analyzing the spatial relation-
ships or spatial distributions of ACS estimates, 
determining the significant differences among 
values is important.

The ACS sampling scheme ensures that the same 
housing unit will not be sampled more than once 
in a five-year sampling frame. The Census Bureau 
provides several ACS data products due to the 
sampling scheme specific to ACS. The products 
may be categorized by the length of period from 
which estimates are derived. Because only about 
2-3 percent of housing addresses are sampled 
each year, data products for the one-year esti-
mates are available only for large administrative 
and statistical areas with at least 65,000 people. 
For the three-year estimates, the reporting areas 
need to meet the minimum threshold of 20,000 
people. The five-year estimates will be available 
for areas as small as census block groups. The first 
official one-year estimates were released in 2006. 
In 2008, the first three-year estimates became 
available. ACS will release the first five-year esti-
mates in 2010. Therefore, when mapping ACS 
data, choosing a data product is partly dependent 
upon the census statistical or administrative units 
to be mapped3.

Two types of statistical errors can be found in the 
ACS data: non-sampling and sampling errors. Non-
sampling error refers to the variability introduced 
by respondents, interviewers, coders and proce-
dures. Sampling error exists in the ACS because 
the sampled population may not represent the 
true population very well, and thus estimates are 
different from the parameter values in the popu-

1 http://www.census.gov/acs/www/
2 http://www.census.gov/acs/www/methodology/methodology_main/.
3 Another ACS data product is the 1 percent sample file, the Public Use Microdata Sample (PUMS), which will not be discussed in 

this paper, as the data are different from the typical ACS estimates.

http://www.census.gov/acs/www/
http://www.census.gov/acs/www/methodology/methodology_main/
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lation. The Census Bureau provides a margin of 
error for each estimate of a variable. In statistics, 
a typical measure to indicate sampling error is 
the standard error, which reflects the imprecision 
in the estimate due to sampling. The margin of 
error provided by the Bureau is 1.645 times of 
the standard error, which indicates a 90 percent 
confidence level. We label this MOE as 90 percent 
MOE, meaning that there is a 90 percent chance 
that the true population parameter lies within 
the range of (estimate) ± 90 percent MOE. This 
range defines the lower and upper confidence 
bounds4. From the margin of error at 90 percent 
confidence level, the standard error can be derived 
(standard error = 90%

1.645
MOE ). With the standard 

error, margins of error at other levels of confi-
dence, such as 95 percent or 99 percent, can be 
determined. For instance, the margin of error of 
the more traditional 95 percent confidence level is 
1.96 times of the standard error. When comparing 
two estimates of the same ACS variable, they are 
statistically different at a given confidence level if 
their confidence bounds do not overlap.5

However, the size of the margin of error cannot 
be used to indicate the quality of an ACS estimate, 
as the margin of error is relative to the scale of the 
estimate. Estimates with large values have larger 
margins of error in general, but these larger MOEs 
do not imply that the estimates are less reliable. A 
preferable measure to reflect the reliability of an 
ACS variable estimate is the coefficient of variation, 
which is the standard error (std error) divided by 
the estimate (sometime, it is multiplied by 100). 
The coefficient of variation indicates the relative 
amount of sampling error associated with the esti-
mate and is independent of the scale of the estimate.  

Because CV =                 , 

and standard error can be determined by
                                       , 

therefore, CV can be derived directly from MOE, 
i.e., 

            CV = 90%
1.645

MOE estimate 
  

. 

The primary goal of this paper is to incorporate 
the corresponding margins of error or coefficients 
of variation into the mapping of ACS estimates. 

Some researchers using the ACS data for statisti-
cal analyses have taken into account the sampling 
error. For example, in studying the activities of daily 
living, Thomson and Gadalla (2003) and Thomson 
et al. (2009) consider the sampling error in a set of 
multilevel modeling exercises. However, maps of 
ACS data frequently do not include information on 
the uncertainty of estimates. The margins of error 
of estimates are often disregarded, although they 
are provided together with the estimates. Guidelines 
for the use of ACS data emphasize the importance 
of MOEs, but no recommendation or guideline is 
provided for mapping the ACS estimates (Citro 
and Kalton 2007, pp. 130). In reviewing certain 
aspects of ACS, Mather et al. (2005) include the 
margin of error when comparing estimates on 
statistical graphs. However, when estimates were 
displayed on maps, the MOE information was not 
included (Mather et al. 2005, p. 13, Figure 4). In 
demonstrating how the Public Participation GIS 
(PPGIS) can empower citizens and local communities, 
Merrick (2003, p. 36, Figure 1) maps the percent 
of Black/African American and Asian populations 
by census tracts using specially tabulated ACS data, 
but without the MOE information. Fronczek (2005, 
p. 4, footnote) stated that estimate differences may 
not be statistically significant because of sampling 
errors. While recognizing this issue, maps produced 
do not incorporate any uncertainty information 
(Fronczek 2005). Examples of mapping ACS esti-
mates without error information are quite abundant 
in the literature (e.g., Gates 2006; Hough and 
Swanson 2006). The Census Bureau recognizes 
the importance of taking into account the error 
information in mapping. As a result, the thematic 
mapping tool in the American FactFinder web 
site of the U.S. Census Bureau6 for the ACS data 
does include the capability to indicate if estimates 
of areal units are significantly different from the 
estimate of a selected unit.

90%
1.645

MOE

std error
estimate

4 http://www.census.gov/acs/www/Downloads/data_documentation/Accuracy/accuracy2006-2008ACS3-Year.pdf.
5 When the confidence bounds, which are related to standard errors, of any two estimates do not overlap, the two estimates are 

definitely different at the given confidence level. However, comparing confidence bounds is not the same as formally testing if the 
two estimates are different. The confidence bound approach is more conservative. Two estimates with overlapping confidence 
bounds may be determined to be different when they are formally tested. However, in this manuscript, we simplify the situations 
by assuming that when two confidence bounds overlap, the corresponding estimates are not significantly different. A formal t-test 
of estimate difference is generally warranted.

6 http://factfinder.census.gov.

http://www.census.gov/acs/www/Downloads/data_documentation/Accuracy/accuracy2006-2008ACS3-Year.pdf
http://factfinder.census.gov


D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: G

eo
rg

e 
M

as
on

 U
ni

ve
rs

ity
 IP

: 1
29

.1
74

.1
14

.9
5 

on
: W

ed
, 0

8 
D

ec
 2

01
0 

19
:1

5:
44

C
op

yr
ig

ht
 (

c)
 C

ar
to

gr
ap

hy
 a

nd
 G

eo
gr

ap
hi

c 
In

fo
rm

at
io

n 
S

oc
ie

ty
. A

ll 
rig

ht
s 

re
se

rv
ed

.

288                                                                                                       Cartography and Geographic Information Science

Mapping Data Quality
Mapping of spatial data quality has been a con-
cern of GIS research for decades (e.g., Beard 
and Buttenfield 1991). The term “data quality” 
is rather broad and fuzzy, and other terms such 
as accuracy, uncertainty, reliability, and precision 
have been used in the literature (Thomson et al. 
2005). Factors affecting spatial data uncertainty, 
particularly pertaining to aggregated census 
data, may be grouped into the three categories 
of temporal, spatial, and attribute (Kardos et al. 
2005). According to the FGDC Content Standard 
for Digital Geospatial Metadata (FGDC 1998), 
quality of spatial data includes six items: attri-
bute accuracy, logical consistency, completeness, 
positional accuracy, lineage, and cloud cover. 
Researchers have systematically addressed most 
of these data quality aspects (e.g., MacEachren 
1994), and location or positional accuracy issues 
have been addressed frequently. Typologies of 
data quality information or uncertainty, some 
of which are intertwined with the data quality 
items in the FGDC metadata standards, have 
been proposed (e.g., Thomson et al. 2005), and 
some researchers have discussed frameworks 
for visualizing the quality of spatial data (e.g., 
Buttenfield 1993; MacEachren 1994). Zhang 
and Goodchild (2002) suggest three types of 
data uncertainty: error, randomness, and vague-
ness. For this paper, our focus is on the attribute 
accuracy or reliability associated with sampling 
error, which is a randomness issue. Particularly, 
users of ACS data should be concerned about the 
reliability of estimates, which can be reflected by 
the associated CV levels discussed above. Census 
maps are often used to identify spatial patterns, 
which are reflected by systematic differences of 
attribute values across units. Spatial patterns 
revealed by ACS estimates may be the result 
of sampling error. Therefore, mapping of ACS 
estimates should include information, such as 
the margin of error, to assist readers to discern if 
estimate differences are significant or not.

The cartographic literature is very rich in visu-
alizing the reliability or uncertainty of attributes 
in maps, but it is less abundant on methods rep-
resenting statistical differences among attribute 
values. MacEachren (1992) suggests different 
types of cartographic symbolization to represent 
uncertainty. His work was expanded by Leitner 
and Buttenfield (2000), who suggest using the 
visual variables of value, texture, and saturation to 
depict attribute uncertainty information. Among 
the techniques evaluated by Kardos et al. (2003), 

blinking of symbols seems to be the most effective. 
Later MacEachren et al. (2005) conclude that the 
extrinsic method (i.e., overlaid symbols) is more 
preferred by subject experts in physical sciences. 
However, mapping units in census maps are often 
polygons representing administrative or census 
statistical units. Graduate symbol maps may be 
appropriate to represent certain census variables 
such as counts or frequencies. But for many statistical 
summary variables in ratio scale, using choropleth 
maps is preferred, and methods focusing on sym-
bolization may not be too effective.

As demonstrated in the literature (e.g., Leitner 
and Buttenfield 2000; MacEachren  1994), attri-
bute reliability information is often displayed on a 
map accompanying the map of the original attri-
bute values. According to Kardos et al. (2003), 
this two-map arrangement method belongs to 
the adjacency technique among the set of tech-
niques of visualizing uncertainty. Attribute and 
the associated uncertainty information may be 
regarded as two variables such that they may be 
combined to form a bivariate map (e.g., Brewer 
and Pickle 2002; Olson 1981). The two variables 
may be represented by two types of symbols (Nelson 
2000) or coloring characteristics (Nelson 1994). 
The bivariate map approach may be considered 
as the overlap method in the technique typology 
suggested by Kardos et al. (2003), as the spatial 
coincidence can be implemented using a color fill 
and a texture overlay (MacEachren et al. 1998). 
Among the two-map side-by-side comparison 
method, the color-fill and texture overlay method, 
and the method using coloring characteristics, the 
color fill overlaid with texture was found to be the 
most effective (MacEachren et al. 1998), and this 
bivariate overlay method was adopted in visualizing 
mortality statistics with data quality information 
(Pickle et al. 1996). MacEachren et al. (2005) also 
find that the method is effective for depicting the 
big picture and is preferred by decision makers. 
However, Kardos et al. (2003) conclude that the 
adjacency two-map comparison method and the 
overlay method are only moderately effective 
among the range of techniques they examined. 
Kardos et al. (2005) suggest an unconventional 
mapping method using hierarchical data struc-
ture based upon the quadtree to map census data 
quality, while preserving the census unit boundary 
representation. But such an approach requires a 
drastically different data structure and therefore 
may not be easily adopted.

While these cartographic and visualization tech-
niques are instructive about the uncertainty of 
attribute values on the map with varying degrees 



D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: G

eo
rg

e 
M

as
on

 U
ni

ve
rs

ity
 IP

: 1
29

.1
74

.1
14

.9
5 

on
: W

ed
, 0

8 
D

ec
 2

01
0 

19
:1

5:
44

C
op

yr
ig

ht
 (

c)
 C

ar
to

gr
ap

hy
 a

nd
 G

eo
gr

ap
hi

c 
In

fo
rm

at
io

n 
S

oc
ie

ty
. A

ll 
rig

ht
s 

re
se

rv
ed

.

Vol. 37, No. 4                                                                                                                                                          289 

of effectiveness and may facilitate certain types 
of exploratory analysis and hypothesis formula-
tion, they are not effective in helping readers to 
discern if attributes in various locations are sig-
nificantly different or not. Discerning attribute 
differences statistically is especially important in 
interpreting maps of ACS data. Pickle et al. (1996) 
include choropleth maps showing mapped values 
significantly different from the national averages. 
Each map of significance accompanies a map of a 
specific type of mortality. Therefore, this method 
can be regarded as a side-by-side comparison. The 

map set is also accompanied by a graphic 
plot showing the 95-percent confidence 
limits of the statistic for major regions of 
the U.S. Providing such plots can assist 
readers in discerning which values are 
statistically different or not.

Proposed Methods  
of Mapping ACS Estimates

When mapping ACS estimates or a tra-
ditional census variable from a decen-
nial census, a map offers a platform for 
a cross-sectional comparison. Estimates 
are mapped for one time frame with 
the intent to show if areas are different. 
Another common objective of mapping a 
census variable is to compare the variable 
values over time to determine if they have 
changed. Some existing cartographic tech-
niques can facilitate such comparisons with 
the inclusion of uncertainty information, 
but they fall short of assisting readers to 
discern if the difference between any two 
estimates is statistically significant or not. 
Below, we will use the 2008 ACS data for 
the State of New Jersey to illustrate sev-
eral methods in indicating the reliability of 
ACS estimates. A map of New Jersey with 
county labels is shown in Figure 1. This 
map is intended to familiarize readers with 
the State’s county geography. The chosen 
variable is per capita income at the county 
level. We will also illustrate several methods 
to depict the significant differences among 
estimates. We tend to limit our methods to 
those that can be replicated using standard 
GIS packages, as GIS are used widely to 
produce census maps.

Proposed methods can be grouped into 
several categories. The first category of 
methods intends to display reliability 
information together with the estimates 

using various map layout designs. The second cat-
egory provides information to assist map readers 
to determine if different estimates are statistically 
different or not. The third category of methods 
allows users to select estimates for comparison. We 
plan to develop tools to implement these methods 
as add-ons for GIS and will disseminate them in 
the future. We also recognize that the reliability of 
estimates may affect the robustness of choropleth 
map classifications, i.e., the determination of class 
intervals may be affected by the errors of estimates. 

Figure 1. Counties in the State of New Jersey.
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Assessing their relationships is beyond the scope 
of this paper, and the issue has been discussed 
thoroughly in Xiao et al. (2007).

Mapping the Reliability of Estimates
As mentioned before, some visualization applica-
tions have adopted a two-map approach (or the 
adjacency technique) where one map shows the 
estimate and another map shows the uncertainty 
information. Figure 2 shows such maps of the New 
Jersey data. The map of the coefficients of variation 
clearly indicates the reliability of estimates in the 
corresponding counties, and one can discern which 
estimates are more reliable than others. While 
Hunterdon County has the highest per capita 
income, its estimate is relatively unreliable, as indi-
cated by the rather high CV level. The per capita 
income levels of Bergen, Middlesex, and Ocean 
counties are in the high-to-medium range, but they 
are relatively reliable, having the lowest CV values. 
However, the two-map scheme puts the burden of 
linking the estimates with the corresponding qual-
ity information on the map readers. Readers have 
to switch the focus back and forth between the two 

maps in order to build the connections between the 
estimates and their CV levels. Mapping only the 
CV values is not sufficient for the readers to deter-
mine if the differences between estimates of any two 
counties, for instance Somerset and Middlesex, are 
statistically different or not.

While the two-map approach puts the estimate and 
quality information separately on two frames of display, 
the bivariate legend approach, the preferred method 
suggested by MacEachren et al. (1998), may treat the 
estimate and quality level as two variables and com-
bines the two variables onto one display frame. This 
specific bivariate legend design uses color fills with 
texture overlay. Figure 3 demonstrates this method. 
Conceptually, information reflected in Figure 3 is 
identical to the two maps shown in Figure 2, but the 
bivariate legend approach is more efficient as read-
ers no longer need to focus back and forth between 
the maps of estimates and CVs. However, some map 
readers may find that the legends are somewhat com-
plicated to interpret. Sharing the same limitation with 
the two-map approach, mapping CV levels in the 
bivariate legend cannot help determine statistical 
differences between estimates.

Figure 2. Per capita income estimates (A), and coefficients of variation (B) in New Jersey by counties, 2008 ACS data.
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Mapping Significant Changes
Intent on evaluating the accuracy of ACS esti-
mates, Gage (2006) compares ACS estimates 
with the corresponding variable values from 
the 2000 decennial census. A map showing the 
differences between ACS estimates and census 
values was first generated, and another map 
with a two-category legend was used to show if 
an area has an ACS estimate statistically differ-
ent from the corresponding 2000 census value. 
The second map identifying areas with a sig-
nificant difference is quite effective at helping 
readers to discern those differences and areas 
on the first map that are statistically meaning-
ful. Although two maps are involved, readers 

likely find the set of maps quite 
manageable because the second 
map has only two categories. 
Nevertheless, the two maps can 
be consolidated into one bivari-
ate legend map with one of the 
variables as a binary variable of 
significance. This approach is 
similar to the one used in Pickle 
et al. (1996) where hatched units 
have sparse data.

Using the same idea, we com-
pare two one-year estimates of per 
capital income (2007 with 2008) 
provided by ACS for New Jersey 
counties. Each estimate of a given 
year has an associated margin of 
error with a 90 percent confidence 
interval. The range derived from 
(estimate ± MOE) gives the 90 
percent confidence bounds of the 
true value of the estimate. If the 
confidence bounds derived from 
any two estimates do not overlap, 
then we may conclude that the two 
estimates are different 90 percent 
of the time (please refer to footnote 
5). Or the difference between the 
two estimates is likely real but not 
due to a sampling error. The two 
estimates to be compared can be 
from the same location at different 
periods, different locations at the 
same period, or different locations 
at different periods.

Figure 4 maps the changes of 
estimates during the two years. The 
classes essentially follow the natural 
breaks in the data, with the exception 
of adjusting one break value to zero 

so that positive and negative changes can be distin-
guished easily. Figure 4 also indicates which counties 
experienced a significant change during the two years. 
When the confidence bounds of the same unit in the 
two years do not overlap, estimates of that areal unit 
in the two years are significantly different. Most New 
Jersey counties did not experience a significant change 
over the two years, except in Camden, Middlesex, 
Passaic, and Warren counties. The two counties that 
experienced a decline in income level are Atlantic 
and Cumberland (both in the southern part of the 
state). However, these declines are not statistically 
significant. This approach is useful for comparing 
estimates over time, or comparing ACS estimates 
with results from a census.

Figure 3. Per capita income estimates with coefficients of variation in New 
Jersey by counties, 2008 ACS data.
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Identifying Significant 
Differences between Classes
The concept of registering dif-
ferences and significance simul-
taneously may also be applied to 
comparing estimates in a cross-
sectional setting. When mapping 
estimates for one time frame using 
a choropleth map, estimates are 
usually put into categories. In such 
a representation scheme, observa-
tions or units in different value 
classes are expected to have differ-
ent attribute values. However, in 
mapping ACS estimates, margins 
of error should be considered in 
order to determine if the differ-
ences between estimates are real, 
but not due to sampling errors, 
as in the previous comparison 
between different periods. A value 
within the confidence bounds, 
(estimate ± MOE), of the estimate 
may be regarded as insignificantly 
different from the estimate. When 
an estimate is assigned to a class in 
a choropleth map, its lower and/or 
upper confidence bounds may be 
extended into other classes. Then 
that estimate is not significantly 
different from values in the lower 
and/or upper class(es).

Each estimate will fall into one 
of the four situations, and these 
situations are illustrated in Figure 
5. In this illustration, hypothetical 
estimates represented by triangles 
are all in one class (medium), and 
the class breaks are at 20 and 30. 
Confidence bounds of each estimate 
are also represented by error bars with round tips. 
The four situations are: 

The estimate is significantly different from 
values in both the higher and lower classes, as 
its confidence bounds are within the assigned 
class interval. 
The estimate is not significantly different from 
values in both the higher and lower classes; 
the confidence bounds of the estimate are 
extended beyond the interval of the assigned 
class into other classes. 
The estimate is not significantly different from 
values in the higher class, as the upper confi-
dence bound is extended into the higher class, 

•

•

•

but the lower confidence bound stays within 
the assigned class interval. 
The estimate is not significantly different from 
values in the lower class, as the lower confi-
dence bound is extended into the lower class, 
but the upper confidence bound stays within 
the assigned class interval. 
These four types of significance may be treated as 

the second variable in the bivariate legend framework, 
and a single map can show the estimates as well 
as whether the estimates are statistically different 
from values in other classes. We call this the class 
comparison method. However, this method is still 
incapable of showing if the difference between 
any two estimates is statistically significant or not, 

•

Figure 4. Change in per capita income estimates for New Jersey counties 
between 2007 and 2008 (2008 estimates minus 2007 estimates) using ACS 
data.
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as the comparison is only based 
upon the margin of error of one 
estimate, not the margins of error 
of both estimates.

Figure 6 is an example using 
the New Jersey data. The natu-
ral breaks classification is used 
with one minor adjustment in 
order to show all four catego-
ries of statistical differences. As 
in most classification methods, 
the minimum and maximum 
values of all observations are 
used to define the lower break 
value of the lowest class and the 
upper break value of the high-
est class, respectively. Estimates 
of Cumberland (minimum) and 
Hunterdon (maximum) define the 
lowest and highest break values 
among all classes, respectively. 

Cumberland, Salem, and Atlantic, all 
clustered around the southern part of 
the state, are in the lowest category of 
income level. For Salem and Atlantic 
counties, their upper confidence bounds 
are extended into the higher class, but 
their lower confidence bounds do not 
reach below the lower break value of the 
lowest class. Therefore, the per capita 
income levels of Salem and Atlantic 
can be regarded as not significantly 
different from values in the higher 
class. For the estimate of Cumberland, 
its upper confidence bound does not 
reach the higher class. Therefore, it 
is significantly different from values 
in the higher class. The estimate of 
Cumberland sets the lower break value of 
the lowest class, and its lower confidence 
bound is “out of range.” For the sake 
of convenience, we treat the minimum 
estimate as significantly different from 
values in the “lower class,” although 
a lower class does not exist. Then we 
may label the Cumberland estimate as 
significantly different from values in 
both classes. At the other end of the 
spectrum, Hunterdon County, with the 
highest per capita income estimate, 
is significantly higher than values in 
the lower class (fourth in the legend). 
Its estimate also sets the upper break 
value of the highest class. Similar to 
the Cumberland’s situation, we also 

Figure 5. Categories of statistical differences when an estimate (triangle) is 
compared with values in other classes (high and low): (I) different from both 
classes; (II) not different from both classes; (III) not different from the higher 
class; and (IV) not different from the lower class.

Figure 6. Per capita income estimates and categories of statistical difference 
from values in the nearest class(es) for New Jersey, 2008 ACS data.
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regard the Hunterdon estimate as 
significantly different from values 
in the “higher class.” Therefore, its 
estimate is labeled to be different 
from both classes. One-third of 
the counties in New Jersey have 
estimates not statistically different 
from values in another class.

Modified Natural Breaks 
Classification
In the class comparison method 
described above, the probability 
that an estimate is significantly 
different from values in other 
classes is apparently affected not 
only by the size of its margin of 
error or confidence interval, but 
also the classification scheme 
adopted (Xiao et al. 2007). All 
mapping methods discussed pre-
viously are rather passive as the 
classification scheme is treated 
as given. A more “proactive” 
approach is to derive a classifi-
cation scheme, or flexible class 
breaks such that interclass esti-
mates are significantly different. 
In other words, after sorting esti-
mates according to their values, 
consecutive estimates with over-
lapping confidence bounds can 
be grouped to the same classes and consecu-
tive estimates with non overlapping confidence 
bounds are assigned to different classes.7 To a 
large degree, this is a modified natural breaks 
classification method based upon the breaks of 
the confidence bounds of the ordered estimates. 
Depending on the distribution of the confidence 
bound values, this method may create classes 
with too many or too few observations. Also, too 
many or too few classes may be created. This 
method also fails to indicate significant differ-
ences between estimates within the same class. 
Nevertheless, this is an exploratory method to 
provide some indications of the extent that esti-
mates across the spectrum are different from 
each other.

Using the New Jersey county data, estimates 
together with their confidence bounds are sorted 

to identify gaps where the bounds do not overlap 
(Table 1, gaps are marked with gray lines). Values 
selected within these gaps are used as class breaks 
in the classification to create a choropleth map 
(Figure 7). The wealthy counties in the north cen-
tral section of the state have income significantly 
higher than the rest of the state, while Cumberland 
County in the southern tip has an income level 
significantly lower than the rest of the state. Most 
other counties in the state have confidence bounds 
overlapping each other, indicating that they are 
quite similarly statistically.

Interactive Visualization
The modified natural breaks classification 
scheme indicates that estimates in one class are 
statistically different from values in other classes. 
However, estimates within the same classes can 

7 Again, the preferred method is to test the differences of consecutive estimates. If the difference between two consecutive 
estimates is significant, then a class break should be inserted.

COUNTY
Per Capita 

Income
MOE Lower Bound Upper Bound

Cumberland 21,162 825 20,337 21,987

Atlantic 26,449 1,247 25,202 27,696

Passaic 26,588 896 25,692 27,484

Salem 27,334 1,709 25,625 29,043

Camden 29,793 903 28,890 30,696

Ocean 29,976 736 29,240 30,712

Gloucester 30,613 897 29,716 31,510

Hudson 31,330 1,004 30,326 32,334

Essex 32,100 899 31,201 32,999

Union 33,379 1,095 32,284 34,474

Middlesex 34,265 737 33,528 35,002

Cape May 34,883 2,347 32,536 37,230

Sussex 34,990 1,283 33,707 36,273

Burlington 35,392 1,103 34,289 36,495

Warren 35,432 2,479 32,953 37,911

Mercer 36,763 1,360 35,403 38,123

Monmouth 40,453 1,069 39,384 41,522

Bergen 42,277 1,007 41,270 43,284

Morris 47,075 1,390 45,685 48,465

Somerset 48,881 2,058 46,823 50,939

Hunterdon 51,080 3,004 48,076 54,084

Table 1. Sorted per capita income levels of New Jersey counties with MOEs, 
lower and upper bounds, using 2008 ACS data. Consecutive estimates with 
nonoverlapping bounds are marked by gray lines.
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be significantly different, and they are not iden-
tifiable on the map using the modified natural 
breaks method. To compare individual estimates, 
an interactive approach is warranted. Cliburn 
et al. (2002) suggest an interactive approach to 
allow users to select areas or regions to high-
light the uncertainty characteristics of a subset. 
Such selected locations may be close together or 
far apart, but in general, they are not numer-
ous in general. Therefore, a reader may select 
locations of interest for comparison first, and a 
bar chart can be created to compare the corre-
sponding estimates with confidence bounds as 

8 Coincidentally, the four selected estimates do not have overlapping confidence bounds. Therefore, using the more conservative confidence 
bound approach comes to the conclusion that they are different. Again, formal testing of differences between estimates is warranted.

9 http://factfinder.census.gov.

the error bars. Plots of confidence 
bounds together with maps have 
been used to indicate the statisti-
cal properties of estimates (e.g., 
Pickle et al. 1996). In the current 
application, we intend to link the 
areas of interest (AOI) closer to 
the statistical plot. In Figure 8A, a 
few counties (Mercer, Middlesex, 
Monmouth, and Somerset) are 
selected for comparison. Then 
bar plots with estimates and con-
fidence intervals are generated. 
The bars can be arranged in 
ascending or descending orders, 
such that users can determine the 
significance of differences easily 
(Figure 8B). To assist readers to 
associate the bars in the plot with 
their corresponding observations 
on the map, observations can first 
be sorted according to their coor-
dinates, such that the bars follow 
a loose spatial order in the plot. 
This arrangement of the bars and 
the associated colors can mini-
mize the reader’s effort to match 
the bars with their corresponding 
locations (Figure 8C). Brushing 
capability can also be developed 
to enhance the interactive com-
parison process (Swayne et al., 
1998; Swayne et al., 2003). In 
addition, a table can be gener-
ated to indicate if estimates of the 
chosen locations are significantly 
different or not, based upon the 
given level of confidence and the 
accompanied MOE information. 

Such a table for the selected counties in New 
Jersey is provided (Table 2). Coincidentally, all 
four selected counties have income levels signifi-
cantly different from each other.8

A minor extension of the above interactive 
approach with the associated significance table 
(Table 2) is to map the differences between the 
estimate of a chosen observation and estimates of 
all other observations. A similar method is imple-
mented in the Census Bureau’s FactFinder web 
site under the thematic mapping capability9. An 
example of such a map is shown in Figure 9, where 

Figure 7. Per capita income estimates of counties in New Jersey; 2008 ACS 
data, using the modified natural breaks classification scheme.

http://factfinder.census.gov
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Middlesex County is the chosen unit. 
Differences between the per capita 
income estimate of Middlesex and 
other counties are mapped. Using 
a bivariate legend design, counties 
with estimates not significantly dif-
ferent from that of Middlesex are 
also indicated. With this technique, 
users can choose a reference obser-
vation as the basis for comparison. 
The results would have been captured in Table 2 
if the previous method was used. However, map-
ping the results may reveal some pertinent spatial 
patterns. In this example, counties with per capita 
income estimates significantly higher than that of 
Middlesex are mostly found in the northwest of 
New Jersey, while those with significantly lower 
estimates are mostly to the south.

In order to determine whether any two estimates 
are statistically different or not, the margins of 

error of both estimates have to be included in the 
comparison. This requirement poses a significant 
challenge to mapping such information together 
with the differences. Theoretically, a comparison 
involves one pair of observations, but not all obser-
vations at once. The two interactive techniques of 
selecting a subset of areas of interest or one areal 
unit as the reference for comparison discussed 
above limit the comparisons to selected pairs, and 
therefore, identifying unit pairs of significant dif-
ferent is rather simple.  However, some features 

Figure 8. Comparison of per capita income estimates by selected counties in New Jersey, 2008 ACS data. Figure 8A. 
Selected counties with highlighted boundaries. Figure 8B. A bar chart with confidence intervals for comparing per capita 
income estimates, sorted in descending order. Figure 8C. A bar chart with confidence intervals for comparing per capita 
income estimates, sorted by their relative locations.

County Mercer Middlesex Monmouth Somerset
Mercer Yes Yes Yes

Middlesex - Yes Yes
Monmouth - - Yes
Somerset - - -

Table 2. Significant differences in per capita income estimates between 
selected counties in New Jersey, 2008 ACS data.
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of the interactive techniques, such as creating the 
bar charts with confidence intervals, are not sup-
ported by standard GIS functions in general.

Summary and Conclusion
Although previous discussions did not explic-
itly state that wrong conclusions were made 
based upon differences in ACS estimates when 
the associated CV or MOE information was not 
taken into account, perceived differences among 
many estimates are actually not statistically sig-
nificant when sampling error is considered. In 
other words, without considering the margin 

of error when comparing ACS 
estimates, erroneous conclusions 
could be made. Obviously, the 
reliability of ACS estimates adds 
another level of complexity in map-
ping and interpreting ACS data. 
But as Openshaw (1989) points out, 
we have to live with uncertainty or 
error in spatial data.

In this article, we suggest several 
methods for mapping the ACS esti-
mates by incorporating the associ-
ated CV or MOE information. These 
methods are not exhaustive but serve 
as the bases for future investigations 
to develop techniques that are more 
effective in incorporating the reliabil-
ity information when mapping the 
ACS estimates. To a large degree, the 
manner of using the CV and MOE 
information in the mapping process 
is dependent upon the intentions 
of the cartographers. Some of the 
suggested methods are limited to 
revealing only the estimate reliabil-
ity levels using CVs so that readers 
may be more aware of the unreliable 
estimates. Other suggested methods 
go as far as indicating the statistical 
difference of estimates or the lack 
thereof. As long as the ACS estimates 
are accompanied by the margin of 
error information, mapping the ACS 
data can and should incorporate the 
reliability information one way or the 
other. Mapping methods suggested 
here obviously can be applied to spatial 
datasets other than the ACS data if 
the standard errors or MOEs of the 

data are available.
The examples used in this paper for demonstration 

adopt a dataset with 21 areal units. This is a rela-
tively small dataset, and therefore the effectiveness 
of our proposed methods for larger datasets has 
not been tested. The usability and effectiveness of 
these methods for larger datasets, such as the one 
including all counties in the U.S., are the subjects 
of future investigations. Our proposed methods 
focus on choropleth maps, which are appropri-
ate for estimates in interval-ratio scales. Some 
proposed methods may be modified to suit other 
types of map to reflect data quality characteristics 
and to determine significant differences.

Figure 9. Comparing per capita income estimates of Middlesex County 
(Chosen) with other counties in New Jersey, 2008 ACS data.
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